Algorithm vs. Algorithm

Critics raise alarm bells about governmental use of digital algorithms, charging that they are too complex, inscrutable, and prone to bias. A realistic assessment of digital algorithms, though, must acknowledge that government is already driven by algorithms of arguably greater complexity and potential for abuse: the algorithms implicit in human decision-making. The human brain operates algorithmically through complex neural networks. And when humans make collective decisions, they operate via algorithms too—those reflected in legislative, judicial, and administrative processes. Yet these human algorithms undeniably fail and are far from transparent. On an individual level, human decision-making suffers from memory limitations, fatigue, cognitive biases, and racial prejudices, among other problems. On an organizational level, humans succumb to groupthink and free-riding, along with other collective dysfunctionalities. As a result, human decisions will in some cases prove far more problematic than their digital counterparts. Digital algorithms, such as machine learning, can improve governmental performance by facilitating outcomes that are more accurate, timely, and consistent. Still, when deciding whether to deploy digital algorithms to perform tasks currently completed by humans, public officials should proceed with care on a case-by-case basis. They should consider both whether a particular use would satisfy the basic preconditions for successful machine learning and whether it would in fact lead to demonstrable improvements over the status quo. The question about the future of public administration is not whether digital algorithms are perfect. Rather, it is a question about what will work better: human algorithms or digital ones.
Category
Year
Author
C. Coglianese; A. Lai

Machine-learning algorithms in regulatory practice

A growing body of literature discusses the impact of machine-learning algorithms on regulatory processes. This paper contributes to the predomi-nantly legal and technological literature by using a sociological-institutional perspective to identify nine organisational challenges for using algorithms in regulatory practice. Firstly, this paper identifies three forms of algorithms and regulation: regulation of algorithms, regulation through algorithms, and regulation of algorithms through algorithms. Secondly, we identify nine organisational challenges for regulation of and through algorithms based on literature analysis and empirical examples from Dutch regulatory agencies. Finally, we indicate what kind of institutional work regulatory agencies need to carry out to overcome the challenges and to develop an algorithmic regu-latory practice, which calls for future empirical research.
Category
Year
Author
L. Lorenz, J. van Erp, Al. Meijer