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Abstract

We live in a complex world where we are overwhelmed by data, but information is
hard to extract and the consequences of our actions are difficult to predict. Humans
have learned to navigate this complexity quite efficiently. Mathematics, statistics,
and machines are still far less capable. In this short note, I provide a few general
considerations, and my perspective, about modeling real, complex systems and about
the automation of this process with learning machines.

This is support material to a presentation entitled “This world is not simple!” given
at UCL enrichment activity on February 10th 2021.

1 Modeling
Humans constantly use models to interpret reality. We do it consciously and
unconsciously, scientifically or instinctively but we need these instruments to negotiate
with reality. We use models when we try to understand what is happening and when
we try to predict what will happen next. We need them to manage and perhaps
reduce the unpredictability of the world. We need them to take decisions. We need
them to survive.

Models are the very essence of what we call thinking. Without models, reality will
be an overwhelming amount of data with no information. Indeed, in my view, models
are the instruments that transform data into information. Nowadays, scientists and
engineers are developing automated modeling tools. The purpose is to give machines
the instruments to select and learn models, developing their ability to interact with
the real world and make autonomous decisions.

There are many different kinds of models; the ones we use, for instance, to choose
our food at the market are different from the ones we use to place our satellites into
the right orbit. As an example, let’s think about the model we use when we cross a
busy road. Let’s make an effort to analyze what we normally, spontaneously, do in
this situation. The process is surprisingly complex and sophisticated. Normally, we
start looking if there is any vehicle and, if there isn’t, then we cross. In the case
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there are vehicles, then we gauge their distance and if they are far enough we cross.
If the vehicles are not too far, then we estimate their speed and we compute if the
time they will take to arrive is sufficient for us to cross the road. There are many
other variables that we evaluate. We distinguish cars from trucks and trucks from
buses; they have indeed different typical speeds and behaviors. We might consider
the vehicle’s trajectory and, in some cases, we might look at the driver and guess his
or her intent to let us pass. We also ponder, and normally dismiss, other variables
that are in most cases marginal, for instance, the color of the vehicle, its brand, or
the age of the driver. This operation is an example of data-driven modeling. We
have learned these operations from observations and, perhaps, from imitation. We
don’t have a general theory; we do all this spontaneously and instinctively without
noticing the amount of data that we are processing and the way we make predictions
and compare and use them. We consider this simple but actually it is a complex
operation that we, modern humans, can perform quite easily but that is extremely
hard to encode in machines or formulate it precisely with our current mathematical
tools.

2 Different kinds of modeling
Models are used to interpret and understand reality. Some models help us to
distinguish between different scenarios such as distinguishing between friends and
foes or isolating food from poison. For instance, one could have a picture of an
animal as input and the information about the kind of animal provided by the model
as output. Similarly, one could have a set of observations of a physical system, for
instance, the positions of the planets in the sky over some time, and the model might
output some mechanism to compute the motion of the planets. Models are also used
to infer the internal relations between a set of variables and the problem consists
of uncovering the structures of similarities, hierarchies, dependencies, causalities
that are in the data-structure. Models are also used to predict outcomes that have
not been observed yet. We use them constantly in our everyday life, to survive; for
instance, to avoid being crushed by a bus when we cross the road. The accuracy of the
model prediction in various circumstances is a measure of the goodness of the model.
All these modeling tasks are not necessarily distinct and can be seen as different
ways of addressing a problem and interpreting the model. Indeed, the distinction
between input and output variables is in most cases just a useful convention and
the laws that map the input into output coincides with the dependency structure
of the dataset. Further, in a statistical setting, prediction consists in inferring the
dependency between variables at different times.

Models are tools to transform data into useful information which can be used for
actions. Data, observations, can be images, movies, journal articles, chats, financial
prices or electric signals, or –indeed– anything that is produced by some process and
carries some information. Data can always be represented as points and shapes in a
space. The space might not be ordinary; it is often high-dimensional and sometimes
non-euclidean. At this level of abstraction, models are maps between points in these
spaces. These maps must both guide us as precisely as possible to the positions
of the existing observations as well as to the likely positions of future observations.
The model provides a description of the system by locating the observations and
their interrelation in these spaces; the model can also provide prediction by inferring

2

Electronic copy available at: https://ssrn.com/abstract=3797711



the presence and location of unobserved points.
Models can be deterministic, perhaps including some degree of uncertainty due

to limited and noisy observations, or they can be probabilistic. Newton’s gravitation
law and the consequent modeling of the motion of celestial bodies is an example of
deterministic modeling which can be written in the form y = f(x) and for which
the true model can be learned with arbitrary precision provided a large enough
number of observations.1 The Maxwell-Boltzmann distribution describing the speed
of particles in a gas is an example of probabilistic modeling where the law to be
learned is the probability that a particle has a velocity smaller or equal to a given
value v: Probability(V  v).2 This is a different kind of problem than the previous;
however, also in this case we could formulate the problem in the form y = f(x)
where, in this case, the relation represents a form of probabilistic dependency between
the variables. Some problems cannot be represented in terms of an input and an
output and the modeling task becomes the discovery of mutual dependency relations
between the variables. The goal becomes to map the structure of the interactions
between the system’s variables and uncover their similarities, their hierarchies, and
causal relations. In other contexts, one might aim instead to discover emerging
behaviors from simple rules, and often for this task simulations are adopted. These
are all forms of modeling, and they all serve the same purpose of helping us to
navigate reality by describing what is happening and making a prediction on what
will happen. In other terms, models help us to interpret existing observations and
make predictions about future ones.

In some contexts, a meaningful modeling approach consists in starting from the
elementary components of the system and modelling their behaviors and interactions
from first principles. This microscopic modeling can produce precise explanations of
the system behavior and can help to understand the origin of macroscopic phenomena
from fundamental microscopic laws. For instance, this approach is sometimes used
to derive the properties of materials from the constituting atoms in so-called ab
initio simulations. However, in many real and complex systems, there is nothing
comparable to the atoms. Indeed, in these systems, the elementary components are
complex themselves and their laws of interactions are often unknown. In complex
systems, microscopic modeling approaches often end up either being unrealistic
oversimplifications or being too complex themselves to be of use to explain the
underlying system.

3 The scientific method
Since at least the sixteenth century, science has developed its way to build and
validate models that has been given the name of the scientific method (Popper, 1934;
Gower, 1997). The scientific method is a circular approach based on observation
of the system, formulation of a model, testing the goodness of such model through
further observations, and comparison of the results with the ones obtained with
alternative models, all under the principle of parsimony (see figure 1).

Making models that can produce predictions is at the core of scientific research.
Being able to make predictions is essential to formulate hypotheses and theories

1Here I use the notation x and y to generically indicate two sets of input and output variables
2Where V is the random variable indicating the velocity of a particle and v is a value.
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Figure 1: The scientific method is a circular process: from observations (data) we
formulate models that make predictions that are tested against further observations, all
all within the principle of parsimony where simpler models are preferred. The people
represented in the images are, from the top right in clockwise order: Nicholas Oresme
(1320-1382); William of Ockham (1285-1347); Galileo Galilei (1564-1642); Johannes Kepler
(1571-1630); Isaac Newton (1643-1727). These are philosophers and natural philosophers
who have greatly contributed to science and to the elaboration of the scientific method.

that can be tested with further observations and can be iteratively refined or be
discarded and changed to obtain better predictions. Prediction, in this context, has
a vast meaning embracing all inferences or relations or gatherings around common
classifications not provided directly by the observations or not provided precisely
by them. Model complexity is another key ingredient; the principle of parsimony
recommends that a simpler model with fewer parameters and fewer assumptions
should be preferred to a more complex model if both produce comparable predictions.
This is an application of the Occam’s razor principle introduced, in the thirteenth
century, by an English Franciscan friar, William of Ockham (pictured on the bottom
right of figure 1).

Epistemologists have repeatedly shown that the scientific method has not been
always rigorously followed by scientists Feyerabend (1975). There are several sit-
uations where the scientific method is hard to apply, for instance, in situations
where experiments cannot be repeated because the system under examination is
unique and evolves with time. Nonetheless, its circular approach, that starts and
ends with observations passing through modeling and prediction, is a very powerful
methodology that has been at the very basis of most of the knowledge about natural
and artificial systems that humankind has acquired in the last five hundred years.
Furthermore, modern day machine learning and artificial intelligence approaches
are rooted in this kind of circular approach and aim to implement it automatically
without the assistance of human scientists. State-of-the-art machine learning and
data-science protocols are expanding the observation part, digging and manipulating
vast datasets; they generate vast quantities of alternative models and they place
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more emphasis on prediction and they tend to discard parsimony, but still, the
general circular approach remain the same.

4 Building models (autonomously) from data
Historically, models were generated from human intuition built upon experience and
then they were tested and validated, or eventually falsified, with observations and
experiments.

This is a top down approach where mechanisms and interactions are assumed a
priori and then data are used to calibrate and validate the model.

There is no need to argue or demonstrate that one of the novel elements of this
epoch is the abundance and availability of data. This, combined with unprecedented
access to powerful computational capabilities, is radically changing the way we are
constructing and operating our models. Rather than following scientists’ genius
intuitions, increasingly models are constructed directly from data. The appealing
aspect of this data-driven model construction process is that it can be automated.
The challenge becomes to test the validity and goodness of the model, which must
perform not only on the dataset from which it has been constructed but also in
other circumstances, perhaps even in situations that never happened before. This
is a bottom up approach that starts from the analytics of observation data and
constructs the model directly from the data. Data-driven modeling is not only a
new opportunity, but a necessity because the complexity of most of the problems we
are tackling nowadays leave less space for the top down approach. It is indeed very
unlikely that someone one day will come up with a genius idea to solve the problem
of recurring financial crises or the prediction of earthquakes. These problems are
much more complex than modeling the motion of the heavenly bodies and the top
down approach based on assumptions from human intuition is less effective and of
narrower applicability.

Automation of the bottom-up modeling approach expands enormously the number
of models that can be proposed. The focus, therefore, moves towards their selection
and validation by testing their prediction capability on data.

Data scientists and machine learners have increasingly powerful instruments
that allow them to build increasingly powerful models using increasingly large
data sources. However, scientists are also facing increasingly challenging problems
involving increasingly complex systems, using data that are complex themselves. For
instance, if we aim to construct a model to monitor the state of the economy and
predict the possible unfolding of a financial crisis, we must build on past data but
we must be aware that, most likely, the next crisis will be different from the ones
that happened in the past. The lesson from the past experience must be ‘learned’
by the model; however, it is essential that the model is able to handle events that
have not been observed in the past. This is clearly a hard task and we still have not
developed all the instruments to achieve it.

5 Modeling real and complex systems
Complex systems are not abstract objects. They are very real and they are everywhere.
Humans are complex systems and so are human societies. Animals –even the simplest–
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are complex systems and many human-created artificial systems –such as financial
markets– are complex themselves. The defining characteristic of complexity is
that simplification is not possible without losing crucial properties of the system.
In complex systems, important properties emerge from the combination of many
different elements. Although their elements might be known, the emergent property
is the result of their combination and prediction is hard to achieve from the analysis
of the constituting elements in isolation (see Parisi (2002); Boccara (2010)). An
example is a living organism, even a simple one, which is made of parts with
properties and functions that might be well known and understood. However, even
the deepest knowledge of all its parts, will not reveal the most important property
of the organism: the fact that it is alive. Being alive is the emergent property
of the whole system which is of greater importance than the sum of the parts.
Understanding emergent properties is a very important part of complex systems
modeling, it is –literally– a question of life and death, and it is what makes such
modeling very challenging.

Henry Louis Mencken –known as the Sage of Baltimore– once noted that ‘For every
complex problem there is an answer that is clear, simple, and wrong’. Nonetheless,
we can devise effective models to describe and predict, at some level of accuracy,
the behavior of complex systems. We do it all the time. Indeed, we are complex
creatures who live in a complex world. The modeling of complex systems has the
same nature and scope as the modeling of any other system. In complex systems,
models are used to describe the system and to predict its behavior. However, the task
can be more arduous. For instance, often in complex systems not only is the system
non-deterministic but also the internal rules change. Nonetheless, the modeling of
these systems is still based on the scientific method’s circular approach. The struggle
we are facing in modeling some real, complex, systems could be showing us the
horizon of applicability of the scientific method. One day, scientists, or machines,
might develop alternative routes.

6 Non-linear modeling
Most of the scientific problems solved in the last few centuries are associated with
finding a linear map y = b0 + b1x1 + b2x2 + .... between two subsets of variables.3
Linear models have the great advantage that a solution can be always obtained with
arbitrarily small error given a large enough number of observations. Furthermore,
approximate solutions with similar error levels have coefficients bi which are at a
similar distance from the coefficients of the exact solution and they tend towards
the exact solution when the error goes to zero. However, a very large number of
problems cannot be addressed with linear modeling. These are typically the problems
associated with complex systems where the non-linear interplay between a large
number of variables is a crucial feature of the systems, that cannot be simplified.
In general, when non-linear models are considered, the complexity of the problem
increases considerably. Indeed, there exists an almost infinite number of models
(the number grows combinatorially with the number of variables) that provide
approximate solutions with equivalent error levels but that are totally different from

3Or some function of the variables g0(y) = b0 + b1g1(x1) + b2g2(x2) + ...., with the bi constants
(independent from xk and y).
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each other.4 For these systems, finding a good model and understanding its validity is
a very delicate task. Noticeably, the instruments at the core of present-day artificial
intelligence –neural networks– are highly non-linear modeling tools (Anthony and
Bartlett, 2009; Mohri et al., 2018).

Models are used to describe systems and to predict their behavior. Description
and prediction are two actions with no simple distinction. Often description is
associated with the present and past state of a system whereas prediction is about
the future state. If we can describe well what is the present state of a system, we
might also be able to infer what will happen next. However, the two are not entirely
coincident. Sometimes a good description of a system tells very little about possible
future outcomes, and conversely, there are examples of good predictive models that
tell very little about the system.

We might argue that the construction of models that are highly predictive but
little descriptive is one of the most controversial issues that emerged in scientific
research in the last decade. Indeed, neural networks produce models that sometimes
can be very good for prediction, but they are often useless for description. This
modeling approach is putting into question the very meaning of modeling and, I
would say, the actual meaning of knowledge. Without a theoretical underpinning
that humans can understand and convey to each other, on what basis can we be
confident that the model will continue to provide accurate and reliable prediction
in the future? What do we really know about a system in which we can predict its
behavior but cannot explain why? And what does explaining really mean?

These are philosophical issues, hard to resolve. However, it is important to be
conscious that we are witnessing a radical change in the way systems are analyzed
and modeled and that this radical change could have profound implications for
what we presently call scientific knowledge. In particular, how to interpret results
becomes blurry when non-linear modeling is used. Indeed, if very different models
provide similar results and similar prediction capability, the function of the model as
a knowledge-building instrument that guides us in the interpretation of the system
becomes questionable. Specifically, the meaning of description fades away because if
the same outcome can be reached by completely different models then the details of
the model and its state have little overall meaning. One might question if prediction
alone can be considered a sufficient outcome of a model. To some extent, it must
be sufficient because if we want to use the model to navigate reality we only need
a precise navigation forecast independently from the mechanism that is used to
reach it. From a blackbox prediction machine, we do not learn much about the
system and its fundamental laws and principles, but we still could attempt to use
the blackbox prediction machine to infer such laws in a similar way as we do with
simulations. However, suppose for instance that we have built a blackbox machine
that predicts well the motions of the major planets. Would it tell us anything about
gravity? Suppose, that with an upgraded model, we would manage also to predict
accurately the orbit of Mercury. Would we have improved our knowledge from
Newton’s dynamics to Einstein’s general relativity?

4Also linear models can have multiple, equivalent solutions when they have more variables than
constraints and therefore are underdetermined. However, non-linearity adds an higher level of complexity
with solutions that are disconnected from each-other.
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7 Model interpretability
The interpretability of artificial intelligence models is an actively debated topic that
sometimes comes under the name of explainable artificial intelligence. The model
interpretability issue touches on several fundamental issues and questions the essence
of what we define knowledge. It has also several practical consequences from ethics
to reliability. In this domain, most questions rest unanswered and it is not the
purpose of this short note to provide solutions. What I want to stress here is that
the problem of interpretability is not an exclusive problem of some specific artificial
intelligence approaches, such as neural networks; it is the unavoidable consequence
of the shift of present-day modeling towards data-driven non-linear tools.

To explain artificial intelligence, blackbox prediction machines can be opened
up and their functioning mechanisms might be decrypted in full detail. However,
the non-uniqueness of the solution, and the existence of a combinatorially large
number of very different machines which provide similar prediction power, makes the
interpretation of each solution meaningless. Data-driven modeling with non-linear
tools provides us with millions of completely different ‘theories’ which might work
fine. However, differently from what the top-down scientific approaches have done in
the past, these competing theories are hard to select or combine in a unified paradigm
that can advance what we become accostumed to calling scientific knowledge.

8 Conclusions
In this short note, I have highlighted a few aspects that, I believe, are relevant
for present challenges regarding data-driven modeling and the automation of the
modeling process for real, complex systems. I did not try to be comprehensive, I
have just tried to provide my perspective and, in doing so, I have certainly ignored
some parts of the current debate and several past contributions to the field.

Science is adopting these modeling instruments, that come under the names of
machine learning and artificial intelligence. How scientists operate might radically
change as a consequence, posing crucial questions as to the meaning of modeling,
explanation, knowledge, and understanding. Science has been a collective human
effort to understand the world which has been grounded on empirical observation
and has been built on a shared and a continuously debated vision of the world. Will
machines learn to do science autonomously? They could, but will scientists be able
to understand them?

My perspective is that the fundamental paradigm shift that we are witnessing
at the present time concerns the use of non-linear data-driven tools for modeling
which have proved to be effective in yielding predictions but puts into question
the traditional meaning associated with description and explanation. An accurate
description of the system and explanation of the process used to obtain the results,
might not be always necessary if the blackbox learning machine provides reliable
and accurate predictions. However, there are contexts, such as ethics, law, and
regulation, where the explanation of the decision-making process is a fundamental
requirement. Furthermore, the lack of interpretability and absence of meaningful
descriptive capability call into question the very essence of what we call knowledge.

Our society is becoming increasingly reliant on these modeling instruments, yet
we still lack the fundamental understanding of these tools. I feel that it is important

8

Electronic copy available at: https://ssrn.com/abstract=3797711



and urgent to contribute to the debate on the fundamental aspects of present-day
machine learning modeling, and this note is my modest contribution to it.
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